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Abstract. The integrability of the cubic-quintic nonlinear Schrodinger equation is investi- 
gated numerically. By analytically studying the linear stability of the homogeneous state 
and numerically solving such a continuum Hamiltonian dynamic system, we show that the 
quintic nonlinear term leads to a spatiotemporal complexity of wave fields, and illustrate 
that this behaviour is mociated with the stochastic partition of energy in Fourier modes. 
In addition, we show the presence of the stochastic motion is due to the homoclinic orbit 
crossings. 

1. Introduction 

The cubic-quintic nonlinear Schrodinger equation (NSE) 

ia,E+a,E+IEIZE-glE14E = o  (1) 

has recently received much attention due to its physical application, where g is a 
parameter. In nonlinear optics, the refractive index is expanded to the second order 
in electric Beld E, the well known cubic NSE is obtained. However, Aciolic er nl [ l ]  
experimentally measured the optical susceptibilities of CdSJe,-, doped glasses using 
a spatially resolved phase-matched multiwave mixing technique, and showed that 
fifth-order nonlinear effects should also be considered. In many-nucleon systems, 
usually, collision processes of heavy ion are described on classical or quasi-classical 
levels [2]; it is shown that in the quasi-classical limit the nuclear hydrodynamics 
equations with the Skyrme forces can be reduced to the non-relativistic cubicquintic 
model for the corresponding choice of variable [3]. In Langmuir plasmas, the beat 
frequency interaction between the large amplitude parts of high-frequency Langmuir 
fields and ion-acoustic waves can occur in the later stages of evolution of plasma 
instability. The fourth field interaction is an important mechanism [4]. 

For the cubic-quintic NSE (l), on the other hand, some theoretical work has been 
obtained analytically and numerically. Puskharov et al [SI obtained solitaly wave 
solutions. Cowan et al [ 6 ]  showed numerically these are not solitons, but behave like 
quasi-solitons. Gagnon et al [7,8] presented a large set of exactly analytic travelling- 
wave solutions for such a model. Zhou et nI [91 also show that a special periodic 
solution can be reduced to a solitary wave as pseudo-energy being zero. The effects 
of the quintic nonlinear term enhance the amplitude and width of the solitary wave 
as compared with that for the cubic Langmuir soliton. Cloot et al [lo] qualitatively 
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proved the existence of bounded solutions by use of the invariants for quasi-particle 
number and energy. Their numerical results displayed the well known Fermi-Pasta- 
Ulam (FPU) recurrent phenomenon. The recurrence is only a special feature for such 
a system. In high space dimensions, the Lie symmetry group was analysed by Gagnon 
and Winternitz [ l l ,  121. They obtained a class of group-invariant solutions. Lemesnrier 
ef al [13] pointed out that the focusing singularities can occur in two- or three- 
dimensions. Also, the stable particle-like solutions may exist in this dynamic system 
[3]. Even in the case of one-dimension, however, (1) for g # 0 does not belong to the 
class of integrable nonlinear evolution equations [14], which means that it cannot be 
solved by the inverse-scattering method and solitons and multi-solitons are not to he 
expected [7]. Many new and very interesting dynamic properties of the system, such 
as the stochastic propagation of wavefields, can appear [9]. In this paper, we theoreti- 
cally and numerically show that the stochasticity results from the irregular homoclinic 
orbit (HMO) crossings, and we report that the quintic Hamiltonian perturbation to the 
cubic NSE can lead to the spatiotemporal complexity of fields. The mechanism of these 
complicated dynamics is also analysed in terms of energy spectra. 

X T He and Cang-fao Zhou 

2. Homoclinic orbit crossings 

In the case of one-dimension, the integrability of the cubic NSE can be verified by 
finding the Lax pair. A class of periodic solutions and solitons can he obtained by 
inverse-scattering transform. The solitons developed by modulational instabilities to 
a homogeneous solution keep their spatially coherent structures and temporally periodic 
evolutions. In order to analyse the dynamic properties of the cubicquintic NSE ( l ) ,  
we consider a homogenous solution being 

E,( I )  = Eo e” (2) 

where Eo satisfies with 

If we represent the solution of (1) in the form 

E ( X , t ) = E , + S E ( X , t )  (4) 

and linearize around E,, we have 

[,, +a;*+;(lEo12) -id, +a, h ( t )  +L(IEoj2) I[ SE* “1 (5)  

where L and h are expressed as following form 

L(IEo12) = 21~o12-3glEo12 
(6) 

In the further analyses, the unstable wavenumber and the linear growth rate must 
he defined. Considering the homogeneous solution E,([) to be modulated by the very 
small perturbation, we also represent the solution of (1) in the form [17] 

h ( t )  = E:(t)(l-Zgj€$). 

E ( X ,  t )  = ~ , ~ i [ +  SE+ eiCm+flrl+6~ - e-i(KX+n*t) (7) 
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where 6E+ and SE- are all much smaller than Eo. According to the linearizing analysis, 
we can obtain the linear disperse relation as follows 

QZ = -K2[2E31-2gE3 - K’]. ( 8 )  
When O <  IKI < K *  = E0[2(1 -2gEi)11/z, Cl is an imaginary number and is defined 

as Q = iy, where y is called as the linear growth rate of modulational instability. Thus, 
the linear growth rate as a function of an unstable wavenumber K is 

for O <  1x1 <K* = E0[2( 1 -2gEi)]’/’. If we consider the periodic boundary conditions, 
the eiaenfunction of (5) can be chosen as 

y ( K )  =K[2Ei(I-2gE~)-KZ]”Z (9) 

where E, E* are the small parameters. 

Eo(l -2gE3’/’, which corresponds to the maximum instability mode. 
It is convenient for the following. numerical experiments that we take K = K,,, = 

Hence, we easily get 

for E,=*{[l-(l-4g)1’z]/2g}‘~z with OGg<$. Thus, the amplitude of the eigen- 
function of the linearizing operator can be written as 

where e, and c, are the small real parameters, and A = [ -1  +4g + (1 - 4g)”’]/2g. 
If we constmct phase-space (IE(X, t)l, IE(X, i ) l , ) ,  obviously, Eo= 
*{[l - (1 -4g)’/2]/2g}1/z with OG g < t correspond to the hyperbolic fixed points. It is 
shown that Eo = *{[ 1 + (1 -4g)’/’”2g}’’’ and Eo= 0 correspond to the elliptic points 
by means of the same process. 

In the numerical experiment, on the other hand, we choose the initial condition as 

(13) 
here E is the small real parameter, Eo={[l - ( 1  -4g)’/’j/2g}’/’, and (13) is called as 
simply initial condition for the cubic NSE [15]. Considering (12) and (13), we have 
that the unstable manifolds for possessing the saddle point (IEol, 0) correspond to 
8 = 45” and 8 = 225”, and the stable manifolds correspond to 8 = 135’ and 8 = 315”, as 
sketched in figure 1. In the numerical processes, the periodic length of system is taken 
as L=2.rr/Km,, and the splitting-time-step spectral method [16] has been improved 
in order to increase the time accuracy. The available modes for fast Fourier transform 
and the time-step are considered, which depend on the accuracy of the conserved 
quantities being preserved to 

In order to analyse the dynamic properties of the cubic-quintic NSE ( l) ,  first, we 
simply discuss the cubic NSE. For g = 0, the integrability can be illustrated in terms of 
the exactly periodic recurrent motion in phase-space. Moon [ 171 experimentally guessed 
the fixed point (1,O) could be a saddle point, which has been conlinned in the above 
linearized analysis. In addition, the orbit to possess the hyperbolic fixed point (1,O) 
should correspond to the homoclinic one. As far as a finite dimensional dynamic 
system is concerned, the stable and unstable orbits for the hyperbolic fixed point would 
smoothly be joined to each other if the unperturbed system is taken to be integrable. 
For a Hamiltonian perturbation the orbits generically intersect transversely, leading 

ISE(X, t)l = c, cos(K,,.X) eA‘+cz COS(K,,,X) e-A‘ (12) 

E(X, 0) = Eo+ Eeio cos(K,,,X) 
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Figure 1. Local phase Rows of saddle point (IEol, 0 ) ,  which are obtained in terms of (12). 

to an infinite number of homoclinic points and chaotic motion [ 181. For our continuum 
Hamiltonian system, the integrability of the cubic NSE is also illustrated in terms of 
such an idea. Making use of the results obtained in the linearized stability analysis, 
we choose the initial parametric values as g = 0, Eo = 1 and fl = 45". From figure Z(a), 
we observe that the stable manifold W"' smoothly joins with the unstable manifold 
W'"'. The orbit to possess the saddle point (1,O) corresponds to the homoclinic one. 
However, when system is added in the quintic Hamiltonian perturbation (g # 0), we 
find that stable and unstable manifolds in phase-space do not smoothly join together 
(see figure 2(b ) ) ,  which illustrates that the current system is near integrable. On the 
other hand, we note that there are not an infinite number of homoclinic points in figure 
2 ( b ) .  In fact, our phase-space is only the projection of a high-dimensional space, where 
the information of phase for wave fields is not contained. Therefore, there may exist 
some difference between our HMO crossings with those in a finite-dimensional Hamil- 
tonian system. To further analyse the chaotic behaviour, we must discuss the long-time 
evolution of wave fields. 

3. Spatiotemporal complicated dynamics 

In section 2, we have shown that the irregular HMO crossings would appear when the 
quintic Hamiltonian perturbation is considered. To analyse the long-time behaviour, 
we also deal with cases of g = 0 and g f 0. 

For the cubic NSE, the integrability can be displayed from figure 3. Figure 3(a) 
indicates the amplitude of fields is periodically temporal evolution. The periodic 
behaviour can also be illustrated by the plot of power spectrum (figure 3(c)), where 
the foundational frequency is about oo = 0.549. The exactly periodic recurrent solution 
is exhibited in figure 3(b, d ) .  These phenomena account for the integrability of the 
cubic NSE. 

As g # 0, however, a completely different dynamic behaviour is shown in figure 4. 
Taking into account the quintic Hamiltonian perturbation, we find that the periodic 
behaviour disappears. The temporal evolution for the amplitude of fields in figure 4(a) 
indicates the typically chaotic characteristic. As shown in figure 4(b), the irregular 
HMO crossings are very clear. A continuous non-periodic spectrum which obviously 
accounts for the chaotic characteristic is described in figure 4(c). These behaviours 
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Figure 2. Stable (W(*') and unstable ( WI"]) manifolds for the hyperbolic k e d  point 
(\Eo\, 0). where solid line is computed with r > O ,  and dotted line is computed wiih 1 <O.  
( a )  Integrable cubic NSE; the orbits smoothly join. ( b )  Non-integrable cubic-quintic NSE; 
the stable and unstable orbits intersect. 

show that the quintic Hamiltonian perturbation leads to chaos. It is noted from figures 
3 and 4 that the quintic nonlinear term in (1) behaves not completely like a general 
dissipative perturbation. Some more complicated dynamic phenomena cannot be 
explained only in terms of the non-integrable perturbation, such as the 'foundational' 
frequency (corresponding to the first maximum peak) in figure 4 ( c )  is about wo = 0.84. 
But such a complicated behaviour will not be discussed in this paper. From figure 
4 ( d ) ,  in addition, we observe that the spatially localized structures are still kept in the 
propagative processes of fields, but are considerably irregular. The presence of these 
irregular spatial patterns shows the recurrence broken down. Thus, the spatiotemporal 
complicated behaviour is realized in the present dynamic system. 
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Figure 3. Solution of the cubic NSE with 8=45" and E =O.l: (a) the periodic evolution 
for the amplitude of fields; ( b )  the phase-space orbit; ( c )  the power spectrum, where 
the foundational frequency w,=0.549; and ( d )  wntoum of IE(X, r)l'=constant, where 
1 = 0 -  100. 

To analyse the mechanism that leads to spatiotemporal complexity, we further 
investigate the processes that the energy in Fourier modes evolves with time. For (l), 
we define energy of system as 

(14) 

In Fourier space, it can be rewritten as 

H = 1 HK = 1 ]EK 1'. 
K K 
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Figure 3. (continued) 

Here K stands for the kth Fourier mode. The time evolutions of the amplitude for 
fields in Fourier space, which also correspond to the evolutions of energy in Fourier 
modes, i.e., HK = [&I2, are shown in figure 5. Obviously, the large part of energy in 
system is lain in the first and the second modes. For the case of g = 0, the time evolutions 
of energy in all modes is periodic, which is consistent with periodic recurrent solution 
(see figure 3). The amplitude of soliton structures is dominated by the total energy of 
system, the width and pattems of coherent structures are associated with energy 
partition in the high modes. Therefore, the evolution of fields is temporally periodic 
and spatially coherent. For the case of g # 0, but, figure 5 shows that energy in the 
system, which is initially confined to the lowest mode, would spread to many higher 
modes due to the nonlinear instability, but would not regroup into the original lowest 
mode. Because the initial energy is added to the maximum modulational instability 
mode, the main energy would be controlled by the finite modes in the processes of 
evolutions. We see from figure 5 that energy contained in the first two modes dominates 
the spatially localized structures being kept. The energy contained in higher modes, 
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Figure 4. Solution of the cubic-quintic NSE with g=O.l, 8=45" and c=O.1: ( a )  chaotic 
evolution for the amplitude of fields; ( b )  the phase-space trajectory illustrates the irregular 
HMO crossings; ( c )  a continuous noise-like power spectrum; and ( d )  contours of 
IE(X, t)l'=constant, where r=S50-600. 

for example the clearly stochastic behaviours in the third and the fourth modes, leads 
to the presence of various spatial patterns of the localized structures. The spatio- 
temporal complexity as shown in figure 4 ( d )  would he associated with the stochastic 
evolutions of energy lain in all modes. 

4. Conclusions and discussions 

The essentially important characteristic of the cubioquintic NSE (I)  has been discussed 
theoretically and numerically. We show that the quintic Hamiltonian perturbation may 
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Figure 4. (continued) 

lead to the integrability of system broken down. The propagation of fields is temporally 
stochastic but keeps their spatially localized patterns that developed by modulational 
instability to a homogeneous solution. The spatiotemporal complexity is due to the 
irregular HMO crossings. We also show that these complicated dynamic behaviours are 
associated with the fact that energy contained in Fourier modes stochastically evolves 
with time. In particular, the stochasticity of energy in higher modes would lead to the 
presence of various irregularly spatial structures. 

Our current results are of significance in physics. In plasma turbulence, for example, 
the cubic NSE describes the nonlinear interaction between Langmuir wave and ion- 
acoustic wave under the subsonic regime, where the second-order fields are considered. 
In the evolutive initial stage, some physical phenomena can well be explained in terms 
of the cubic NSE. In the nonlinear strong turbulent stage, however, the cubic NSE may 
be no longer valid. The other physical effects, such as damping and dissipation, etc, 
would lead to the presence of the complicated dynamics of Langmuir fields. On the 
other hand, the high order field interaction has to be considered in the evolutive later 
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FigureS. The time evolution ofthe amplitude for fields in Fourirrspace (also corresponding 
to the energy in Fourier modes, i.e., H, = [ E ( K ) I ’ )  for ( I )  with 8=45’, e=O.l, where 
dotted curves correspond to solutions of the cubic NSE and solid curves correspond to 
solutions of eubioquintic NSE with g=O.l, respectively. 
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stage of plasma instability with the increase of the amplitude of fields. Although the 
dynamic model (1) only involves in the fourth-order field interaction, it is shown that 
the quintic Hamiltonian corrections may also drive the chaotic evolutions of Langmuir 
fields. In addition, our research would also be interesting in nonlinear optics, etc. 

Finally, we should mention the main difference between our work and those 
discussed by some authors. For the study of the spatiotemporal complexity in Langmuir 
turbulence, Doolen et al [ 191 first investigated the driven dissipative Zakharov equations 
numerically. Their studies demonstrated the co-existence of coherent spatial struc- 
tures-cavitons-and temporal chaos. After their work, a set of dynamic models have 
been discussed in studying the process of coherence to turbulence. But, much work 
deals with the driven damping, force dissipation and nonlinear inhomogeneous media 
[20]. Arich variety of spatiotemporal complexity, which suggests that alow-dimensional 
chaotic attactor exists in an infinite-dimensional system, has been observed [Zl]. For 
the continuum Hamiltonian system, however, the problem becomes extremely difficult 
for general initial conditions since the system does not reduce to a finite-dimensional 
system as that in the case of dissipative perturbations though the existence of the 
solitary waves could slow down the dimensions of system. Therefore, more care is 
needed to investigate chaos of the continuum Hamiltonian system. 
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